

ROBOSIM -

PIONEER ROBOT INTERFACE

by

VIKRAM RAMAN

 B.E., University of Madras, India, 2003

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2005

Approved By:

Major Professor

Scott A. Deloach, Ph.D.

ABSTRACT

This report describes the design and implementation of a robot interface component of

the RoboSim. RoboSim is used to perform simulations of many heterogeneous types of

robots all working within a single, virtual environment. It provides a distributed

framework to develop various robotic applications with different robot species.

This report specifically documents the design and implementation of the application

programming interface for the ActivMedia Pioneer robot, which serves to emulate the

behavior of the Pioneer robots in the simulation environment. It also includes interfaces

to emulate the various peripherals such as the sonar, heat and laser sensors.

All the features were tested through a simple application that involved controlling the

simulated robot within the virtual environment. An analysis of the results and the

conclusions drawn are also presented.

i

TABLE OF CONTENTS

LIST OF FIGURES .. iv

ACKNOWLEDGEMENTS... v

Chapter 1 Introduction... 1

1.1 Simulation... 1

1.2 Cooperative Robotic Simulator... 1

1.2.1 Environment Simulator... 2

1.2.2 GeometryClient ... 3

1.2.3 Robot Simulator .. 3

1.2.3.1 HardwareSimulator.. 4

1.2.3.2 Robot-Object... 4

1.2.4 Viewer component .. 4

1.2.5 RemoteControl ... 5

1.2.6 ControlPanelClient ... 5

1.2.7 CommunicationsSystem... 6

Chapter 2 Pioneer .. 7

2.1 Introduction... 7

2.2 ARIA... 7

ii

2.3 Class ArRobot .. 9

2.3.1 Client-Server connection commands .. 10

2.3.2 Motion commands .. 10

2.3.3 Range devices related commands ... 12

2.4 Class ArRangeDevice.. 13

2.4.1 Robot related commands... 13

2.4.2 Buffer related commands.. 14

2.5 Class ArPose .. 15

2.6 Class ArSensorReading ... 15

2.6.1 Sensor reading commands .. 15

Chapter 3 Robot Package .. 17

3.1 Introduction... 17

3.2 Architecture... 17

3.3 Class ArRobot .. 18

3.4 Class ArRangeDevice.. 22

3.5 Class ArPose .. 24

3.6 Class ArSensorReading ... 24

3.7 HardwareSimulator.. 25

3.8 Communication Protocols... 26

3.8.1 Protocol between Robot-Object and Hardware Simulator............................... 26

3.8.2 Protocol between Hardware Simulator and Environment................................ 27

iii

Chapter 4 Test Simulation ... 30

4.1 Introduction... 30

4.2 Maze application... 30

Chapter 5 Conclusions and Future Work .. 32

5.1 Conclusion .. 32

5.2 Future Enhancements.. 32

REFERENCES .. 34

Appendix – User Manual... 35

1. Robot parameter XML file.. 35

2. Environment XML File... 37

3. Running the application .. 37

iv

LIST OF FIGURES

Figure 1: Cooperative Robotics Simulator Architecture .. 2

Figure 2: High Level class diagram of ARIA... 9

Figure 3: Class diagram of the robot package .. 19

Figure 4: ArRobot class diagram .. 20

Figure 5: Aria class diagram... 23

Figure 6: Sequence diagram for interaction between ArRobot, HardwareSimulator and

Environment.. 26

Figure 7: Sequence diagram for protocol between ArRobot and Hardware Simulator.... 28

Figure 8: Sequence diagram for protocol between Hardware Simulator and Environment

... 29

Figure 9: Maze application ... 31

v

ACKNOWLEDGEMENTS

I would like to thank Dr Scott Deloach, Dr David Gustafson and Dr William Hankley for

their guidance during the entire course of the project. I would also like to thank my

project members Balakumar Krishnamurthi, Thomas Kavukat and Ryan Shelton for all

their help and commitment in making this project a success.

1

Chapter 1 Introduction

1.1 Simulation

Simulators provide users valuable feedback while designing real world systems. They

allow the designer of a system to determine the correctness and efficiency of a design

before its actual implementation. Consequently the users may explore the merits of

alternative designs without actually physically constructing the systems. Also by

investigating the effects of specific design decisions during the design phase rather than

the construction phase, the overall cost of building the system is reduced significantly.

1.2 Cooperative Robotic Simulator

This project involved the design and implementation of the ActivMedia Robotic Interface

for Applications (ARIA) for the Pioneer robot within the framework of our cooperative

robotic simulator named RoboSim.

RoboSim is a distributed simulation environment for testing cooperative robotic

applications. Robotic applications with arbitrary number of robots working in a complex

physical environment can be tested and developed using RoboSim. The simulator

consists of different components: the Environment simulator, the GeometryClient, the

HardwareSimulator, the Robot-Object, the Viewer component, the RemoteControl

component, the CommunicationsSystem and the ControlPanelClient. The

component model of the simulator is shown in Figure 1.

2

Figure 1: Cooperative Robotics Simulator Architecture

1.2.1 Environment Simulator

The Environment Simulator is the central component of the simulator. It is responsible

for maintaining the state of all the components of the system including the robots. All the

other modules interact through the environment. It receives the sensor and motion

requests from the robot simulator each time step and provides the simulated robot with

3

the sensor response. The environment also updates the viewer module with the current

state of all the objects within the simulation environment each time step.

1.2.2 GeometryClient

The GeometryClient is responsible for the geometric representation of

the environmental objects, collision detection and distance finding. By

finding intersection between objects, it can prevent objects from overlapping in

the environment and also simulate sonar and laser range-finding. It simulates the virtual

environment within which the entire simulation is performed. The environment translates

requests from the HardwareSimulator into appropriate messages to the

GeometryClient.

1.2.3 Robot Simulator

The Robot Simulator comprises of three parts: the HardwareSimulator, the Robot-Object

and a robot control code, which will contain the robotic application logic. A standard

application programming interface (API) is defined between the robot control program

and the HardwareSimulator. This API facilitates the robot control code to work with

various Hardware Simulators. In reality the sensors and actuators exist on the robot

hardware, while in the Robot simulator the HardwareSimulator emulates the standard

sensors and actuators.

4

1.2.3.1 HardwareSimulator

The HardwareSimulator is as an interface between the Robot-Objects and the

Environment. It is a layer of abstraction emulating the hardware of the simulated robot

such as the sonar, heat, laser sensors and also the robot itself. It processes and sends the

robot sensor, motion requests to the environment every time step, and passes the

environment responses back to the Robot-Object.

1.2.3.2 Robot-Object

The Robot-Object encapsulates the API to the simulated robot. An API for the Pioneer

robots was implemented as a part of this project. There also exists an API for the Scout

class of robots [4]. The Robot-Object provides the ability for an application programmer

to control the robot behavior, the various sensors of the robots and access the data

returned by the robot sensors. The robot interface exists above the

HardwareSimulator layer and thus interacts with the environment module through the

HardwareSimulator.

1.2.4 Viewer component

The RoboSim viewer displays a two dimensional or a three dimensional view of the

simulation to the user. This is an integral component of the simulator as it allows the user

to observe the behavior of the environment objects and the robots within the simulation

environment. The viewer includes the capability to customize the view in terms of the

camera angle, the zoom level and the light source. The simulation can also be recorded

5

and replayed using the viewer. The environment updates the viewer with the current state

of all the environment objects at every time step of the simulation.

1.2.5 RemoteControl

The RemoteControl component provides the capability to control a simulated robot

from a remote machine. It includes a graphical user interface (GUI) for the end user to

view an individual robot’s parameters. It contains graphical buttons that provide the

ability to control the simulated robot manually. The action events associated with each of

the buttons generate the pertinent motion or sensor requests to the Robot-Object. It also

consists of an embedded viewer that can be used to view the entire simulation. Thus the

RemoteControl component presents all the aspects of the simulation to the end user

through a single, convenient GUI.

1.2.6 ControlPanelClient

The ControlPanelClient is a graphical user interface that allows the user to

manipulate the environment. It is possible to load the environment files, start and stop a

simulation and set the various simulation properties; these include the network options,

the communication settings and the factors in the simulation. It allows the user to

monitor, change the status of the simulated robots within the environment and includes

2D, 3D representations of the simulation environment.

6

1.2.7 CommunicationsSystem

Cooperative robotic applications involve a large amount of communication between the

various robots. The CommunicationsSystem allows control over the delivery of

messages by providing various standard communication capabilities such as

broadcasting, multicasting and point to point messaging.

Chapter 2 will review the Pioneer robot and its associated client software in detail; we

will then look at the different components of the Robot package in Chapter 3 followed by

the conclusions and possible future enhancements in Chapter 4.

7

Chapter 2 Pioneer

2.1 Introduction

This project was aimed at simulating the Pioneer class of robots in RoboSim. The

ActivMedia Pioneer is a family of mobile robots, both two wheels and four wheel drive

that employs common client-server robotics control architecture [2]. ActivMedia Pioneer

robots can be configured with sonar and laser range finders that provide object detection

and range information for collision avoidance, localization, and navigation. The Pioneer

robot can be controlled remotely using client software or operated manually using a

joystick. The main robot-control client software available for the Pioneer robots is the

ActivMedia Robotics Interface for Applications (ARIA), SRIsim ActivMedia Robot

simulator and SRI’s Saphira client development suite. The ActivMedia Pioneer robots

operate as the server in a client-server environment. Specifically this project involved the

implementation of the ARIA API as applicable to RoboSim to enable the testing of

applications that would utilize the Pioneer class of robots.

2.2 ARIA

ARIA is an object-oriented, robot control applications-programming interface for

ActivMedia Pioneer robots. It is a C++-based development environment that provides a

high performance access to and management of the robot server, as well as to the many

accessory robot sensors and effectors. There also exists a Java based API that employ

native method calls for the robot control applications to use. It includes clear and

convenient interfaces for applications to access and control ActivMedia Robotics

8

accessory sensors and devices, including operation and state reflection for sonar and laser

range finders, inertial navigation devices, and many others. It is an ideal platform for

robotics client applications development.

The ARIA API consists of a set of classes that collectively provide an interface for the

client side application to control the robot and its peripherals. These include access to the

current state of the robot, its configuration and the readings of the sensors that can be

used for obstacle avoidance and to control the movement of the robot. The most

important class is ARIA's ArRobot class which collects and organizes the robot's

operating states, and provides a clear and convenient interface for other ARIA

components, as well as upper-level applications, to access the robot state reflection

information for purposeful control of the robot and its accessories. The ArRangeDevice

class provides a complete set of interfaces to access the histories of relevant readings

associated with each sensor. The ArSonarDevice and the ArSick are two of its

subclasses that represent the sonar and the laser range finder respectively. All range

devices are range-finding devices that periodically collect 2-D data at specific global

coordinates. The ArSensorReading class holds the data, with each sensor (range

device) having an instance of this class to represent its associated readings. A high level

class diagram representing the interaction of these classes is given in Figure 6. The

commands supported by the different ARIA classes are presented below.

9

Figure 2: High Level class diagram of ARIA

2.3 Class ArRobot

The ArRobot class acts as the client-server communications gateway, central database

for collection and distribution of robot information, and systems synchronization

manager. This class is the gathering point for range-finding sensor and Actions classes. It

maintains and distributes a snapshot of the robot's operating conditions and values. Low-

level sonar readings are also reflected in ArRobot and can be examined with the relevant

methods provided. It handles the low-level details of constructing and sending the client-

command packets to the robot as well as receiving and decoding the various Server

Information Packets from the robot. The commands supported by the ArRobot class for

robot control is given below.

10

2.3.1 Client-Server connection commands

bool blockingConnect()

Connects to the robot, returning only when a connection has been established or when a

connection can't be made. This function returns true if the connection is successfully

established.

bool disconnect()

Disconnects the client from the robot. Returns true if the disconnection was successful.

bool isConnected()

Questions whether the client is connected to the robot or not, returning true if connected

to the robot.

2.3.2 Motion commands

void move(double distance)

Moves the robot forward/backward by the given distance, where the distance is specified

in mm. The robot moves at a translational velocity that has been set by the most recent

call to the setVel() command.

void stop()

Stops the robot, resets the translational and rotational velocity to zero

void setRotVel(double velocity)

11

Sets the rotational velocity of the robot in degrees/sec. Future calls to the setHeading()

command, will turn the robot to the desired heading at a rotational velocity that has been

set here.

void setVel(double velocity)

Sets the translational velocity of the robot in mm/sec. Subsequent move instructions will

move the robot at this velocity.

void setVel2(double lvelocity, double rvelocity)

Sets the velocity in mm/sec of each of the wheels on the robot independently

void setMaxRotVel(double velocity)

This sets the maximum rotational velocity the robot will go in degrees/sec (must be a

non-zero number)

void setMaxTransVel(double velocity)

This sets the maximum translational velocity the robot will go in mm/sec.

void setHeading(double heading)

Sets the desired absolute heading of the robot in degrees. The ArRobot class does not

contain any explicit turn instructions; this instruction turns the robot to the desired

heading. The robot turns at a rotational velocity specified by the most recent call to the

setRotVel() instruction.

12

void setDeltaHeading(double deltaHeading)

Sets the heading relative to the current heading. For example, if the current heading was

180 degrees, the command setDeltaHeading(-90) would set the heading of the robot

to 90 degrees.

2.3.3 Range devices related commands

void addRangeDevice(ArRangeDevice device)

Adds a range device to the robot's list of range devices, and sets the device's robot pointer

void remRangeDevice(ArRangeDevice device)

Removes a range device from the robot's list of range devices

int getClosestSonarRange(double startAngle, double endAngle)

Returns the closest of the current sonar readings in the given range (in mm)

int getClosestSonarNumber(double startAngle, double endAngle)

Returns the number of the sonar that has the closest current reading in the given range

ArSensorReading getSonarRange(int sonarNumber)

Gets the range of the last sonar reading for the given sonar.

ArSensorReading getSonarReading(int sonarNumber)

Gets the sonar reading for the given sonar

13

bool isSonarNew(int sonarNumber)

Find out if the given sonar has a new reading. Returns false if the sonar reading is old, or

if there is no reading from that sonar.

2.4 Class ArRangeDevice

Range devices are abstractions of sensors for which there are histories of relevant

readings. A range device is attached to the robot with ArRobot.addRangeDevice and

removed with ArRobot.remRangeDevice. ArSonarDevice and ArSick are two of

the subclasses of ArRangeDevice representing the sonar and the laser respectively. In

ARIA the sonar readings automatically come included with the standard server

information packets and is processed by the ArRobot class. The sonar must be explicitly

added with the Robot-Object to use the sonar readings for control tasks. This class has

two buffers, a current buffer for storing just recent (relevant) readings, and a cumulative

buffer for a longer history. The sizes of both can be set in the constructor. The set of

relevant methods in the ArRangeDevice class is given below.

2.4.1 Robot related commands

void setRobot(ArRobot robot)

Sets the robot this device is attached to

ArRobot getRobot()

Gets the robot this device is attached to

14

2.4.2 Buffer related commands

void addReading(double x, double y)

Adds a reading to the buffers

void setCurrentBufferSize(int size)

Sets the size of the current readings buffer

void setCumulativeBufferSize(int size)

Sets the size of the cumulative readings buffer

void setMaxRange(double range)

Sets the maximum range for this device

 double getMaxRange()

Gets the maximum range for this device

std::list<ArPose *> *getCurrentBuffer()

Gets current buffer of readings.

std::list<ArPose *> *getCumulativeBuffer()

Gets the cumulative buffer of readings

15

2.5 Class ArPose

This class represents a position in the environment. It is closely related to the

ArRangeDevice class, as every element in the current and cumulative buffer is an

instance of this class. The commands supported by this class is given below.

double getX()

Gets the X value of the position

double getY()

Gets the Y value of the position

double getTh()

Gets the heading of the position

double findDistanceTo(ArPose position)

Finds the distance of the given position to the current position.

2.6 Class ArSensorReading

A class to hold a sensor reading; should be one instance per sensor.

2.6.1 Sensor reading commands

bool isNew(int counter)

Given a counter, returns whether the reading is new

16

int getRange()

Gets the range of the sensor reading

double getX()

Get the x position of the reading

double getY()

Get the y position of the reading

void newData(int range, int x, int y, int counter)

Updates the reading with new data.

17

Chapter 3 Robot Package

3.1 Introduction

The Robot package is a part of the hierarchical framework in RoboSim that contains the

classes that implement the functionality of the Robot Simulator that was briefly described

in Chapter 1. The Robot Simulator is responsible for simulating the different classes of

robots such as the Scout and the Pioneer in RoboSim. This chapter will present the

overall architecture of the robot package and the Pioneer Robot-Object in detail.

3.2 Architecture

The generic robot package is at the top of the hierarchy. It contains the AbstractRobot

class that defines operations that are common to all the classes of robots. A

PeriodicSensor class handles the generation of events at the frequency the periodic

sensor being emulated is to be used. The RobotRequest and RobotSensorResponse

classes encapsulate the information present in the requests being sent to the Environment

and in the corresponding sensor responses that is returned. The RobotUtil class

provides generic services to the whole application like controlled message output,

generating a representation of the state of a robot at any instance in simulation etc.

Next in the hierarchy are the packages emulating the Scout and the Pioneer robots. These

robot specific packages contain the Robot-Objects that implement the abstract methods

common to all the Robot-Objects as specified in the AbstractRobot Class along with

the respective commands supported by the particular type of robot that they emulate.

18

Each Robot-Object is associated with an instance of the HardwareSimulator in order

to emulate its sensors and other peripherals. The Robot-Object component facilitates

intelligent multi-agent communication, navigation and localization. The Robot-Object

encapsulates the features and actions of a specific type of robot in the simulation

environment. The generic implementation of the Robot-Objects allows the simulation of

varied robots with different sets of sensors and actuators. We will now look at some of

the classes and relevant methods from the ARIA package that was implemented in

RoboSim.

3.3 Class ArRobot

The ArRobot class encapsulates the Pioneer class of robots discussed in Chapter 2. It

maintains and distributes a snapshot of the simulated Pioneer robot's operating conditions

and values to the client. It provides an application programming interface to the simulated

Pioneer robot within the framework of RoboSim. The association between the different

classes of the robot package and the ArRobot class is given in Figure 3 and the class

diagram of the ArRobot class is given in Figure 4.

The ArRobot class supports a set of commands to initially connect to the simulated

robot, to configure its sensors, observe the corresponding sensor readings and to control

the motion of the robot according to the application logic. The main set of commands that

were implemented in RoboSim is given below.

19

Figure 3: Class diagram of the robot package

20

Figure 4: ArRobot class diagram

21

• Client-Server Connection Commands

o boolean blocking_connect()

o boolean disconnect()

• Motion Control Commands

o void move(double distance)

o void stop

• Robot Parameter Setting Commands

o void setRotVel(double velocity)

o void setVel(double velocity)

o void setHeading(double heading)

• Range Devices related commands

o void addRangeDevice(ArRangeDevice device)

o void remRangeDevice(ArRangeDevice device)

o int getClosestSonarRange(double startAngle, double

endAngle)

o int getClosestSonarNumber(double startAngle, double

endAngle)

o double getSonarRange(int sonarNumber)

o ArSensorReading getSonarReading(int sonarNumber)

o boolean isSonarNew(int sonarNumber)

22

The ArRobot is the most important class in ARIA. It interacts with the other classes in

the ARIA package to provide a single convenient interface for the client to observe the

current state of the robot and its associated sensors. The class diagram for the entire set of

classes in the ARIA package that were implemented in RoboSim is given in Figure 5.

3.4 Class ArRangeDevice

This class describes a set of methods that are common to all range devices such as the

sonar and the laser. Each range device has a history of relevant readings associated with

it; the range device class provides two buffers to store these readings – the current buffer

and a cumulative buffer. As the name suggests the current buffer consists of most recent

readings of the respective range device. The cumulative buffer contains the readings of

the range device for a period of time as defined by the size of the cumulative buffer.

ArSonarDevice and ArSick are two of the subclasses of ArRangeDevice specifically

representing the sonar and the laser respectively. Some of the commands supported by

the ArRangeDevice class that were implemented are given below.

• Robot related commands

o void setRobot(ArRobot robot)

o ArRobot getRobot()

23

Figure 5: Aria class diagram

24

• Device buffer commands

o void addReading(double x, double y)

o void setCurrentBufferSize(int size)

o void setCumulativeBufferSize(int size)

o ArrayList getCurrentBuffer()

o ArrayList getCumulativeBuffer()

3.5 Class ArPose

This class represents a position in the environment. Every range device reading has a x

and y position associated with it along with the heading. All positions in the ARIA API

are represented in terms of this class. Thus all the buffer readings in the

ArRangeDevice class are represented as an instance of the ArPose class. The set of

methods implemented as a part of this class is given below.

• Position related commands

o double getX()

o double getY()

o double getTh()

o double findDistanceTo(ArPose position)

3.6 Class ArSensorReading

This class encapsulates a sensor reading. Each sonar in the sonar array has an instance of

the ArSensorReading class associated with it. Data such as the range returned by each

25

sonar and the x and y position of the reading can be accessed through this class. The set

of relevant methods that were implemented is given below.

• Reading related commands

o bool isNew(int counter)

o int getRange()

o double getX()

o double getY()

o void newData(int range, int x, int y, int counter)

We will now look at the HardwareSimulator class in the robot package and how it

interacts with the ARIA package that was presented in order to simulate the Pioneer robot

in RoboSim.

3.7 HardwareSimulator

The HardwareSimulator class emulates the various sensors and actuators on a robot. It

acts as interface between the ArRobot class and the Environment module. Each Robot-

Object contains an instance of the HardwareSimulator; The Robot-Object adds any

sensor or motion requests to the request queue, when a time step is received the requests

for that time step are removed from the request queue and sent to the environment by the

HardwareSimulator. The HardwareSimulator then waits for a response for each of

those requests and notifies the Robot-Object of the sensor response. A sequence diagram

depicting the interaction between the ArRobot class, the HardwareSimulator and the

environment is show below in Figure 6.

26

Figure 6: Sequence diagram for interaction between ArRobot, HardwareSimulator and Environment

3.8 Communication Protocols

The Robot simulator module consists of two main communication protocols that dictate

the communication between the Robot-Object, the HardwareSimulator and the

Environment. The protocol between the Robot-Object and the HardwareSimulator

controls the transfer of the robot commands onto the HardwareSimulator. The

protocol between the HardwareSimulator and the Environment controls the transfer of

the commands from the HardwareSimulator onto the Environment, which in turn

reflects the effects on the virtual simulation environment.

3.8.1 Protocol between Robot-Object and Hardware Simulator

The Robot-Object generates requests that need to be serviced each time step by adding it

to the robotRequestQueue. The robotRequestQueue is a data structure that is

maintained by the HardwareSimulator and it contains all the robot requests that need

to be processed and sent to the environment at the beginning of each time step. The

HardwareSimulator abstracts the processing of these requests and sends the response

27

back to the Robot-Object. The Robot-Object waits till the HardwareSimulator notifies

it of a sensor-response. The sequence diagram for the protocol between the

HardwareSimulator and the Robot-Object is given in Figure 7.

As can be seen from the figure, the Robot-Object first instantiates a

HardwareSimulator thread to run on its behalf in order to emulate the robot

peripherals. The first thing that the HardwareSimulator does upon instantiation is to

establish a connection with the environment. It then periodically monitors the robot

requests queue, and sends any of the robot’s requests to the environment. The

HardwareSimulator then waits for the environment to process the requests and deliver

the sensor responses. These sensor responses are then sent back to the Robot-Object.

Thus the Pioneer robot is simulated in RoboSim.

3.8.2 Protocol between Hardware Simulator and Environment

The HardwareSimulator interfaces the Robot-Object with the environment. Every

time step, it receives the current time step of the simulation from the environment, sends

the relevant robot requests to the environment and waits for the sensor responses from the

environment. A sequence diagram depicting the protocol between the

HardwareSimulator and the Environment is given in Figure 8.

28

Figure 7: Sequence diagram for protocol between ArRobot and Hardware Simulator

29

Figure 8: Sequence diagram for protocol between Hardware Simulator and Environment

30

Chapter 4 Test Simulation

4.1 Introduction

The implementations of the ARIA classes used to emulate the Pioneer robot in RoboSim

were tested using a simple robotic application. The application involved the simulation of

many Pioneer robots navigating autonomously through a maze in search of a simulated

Gold object in the environment. The robots navigated thorough the maze using only the

sensor readings of the simulated robot. We will now look at the structure of the maze

application.

4.2 Maze application

The basic design of the maze application is given below. The GoldFinder class is the

main class of the application. Its main function is to start a given number of Robot-Object

threads. The Gold class extends the ArRobot class and thus represents the Robot-Object

in this application. Each Robot-Object thread executes the robot control code until either

of the robots has found the Gold. The MazeMessage class is used to encapsulate the

message information that is passed between the robots in the application. The robot

control code involves each robot navigating autonomously through the maze using only

the sensor readings obtained through the related methods in ArRobot. When any one of

the robots has identified the Gold it sends a message to the other robots through the

environment and the simulation ends. The simulation utilized all the classes that were

implemented as a part of the ARIA package and all the implementations were tested

successfully.

31

Figure 9: Maze application

32

Chapter 5 Conclusions and Future Work

5.1 Conclusion

This project was aimed at expanding the scope of RoboSim to aid running simulations of

the Pioneer class of robots in different virtual environments. The ARIA client interface to

the Pioneer robot was implemented to this effect. A minimal subset of the ARIA

software, related to the motion control of the robot and those providing access to its

sensor readings were implemented and utilized successfully in test simulations. The

functionalities to interface with the Pioneer robot were thus emulated successfully.

5.2 Future Enhancements

A minimal set of classes of the ARIA software have been implemented providing a basis

for testing of applications that use the Pioneer robot. Some possible extensions include:

• The physical positions of the sonar and other robot peripherals are currently hard

coded in the environment module. The Pioneer robot interface supports the

loading of robot parameter files on the robot side, but currently this information is

not passed on to the environment module. Also since the emulation of the Scout

robot does not include a parameter file being loaded on the robot side, an obvious

extension would involve minor modifications in the Scout robot implementation

and in the protocol between the HardwareSimulator and the Environment,

wherein the relevant robot parameters are passed on to the Environment before

33

the start of the simulation. This would facilitate accurate dynamic positioning of

the peripherals within the Environment during the entire period of the simulation.

• The Environment waits for all robots to connect to it at the start of the simulation,

and the simulation ends once any of the robots disconnect from the Environment.

From the perspective of the robotic application designer, it might prove useful to

support dynamic addition and removal of robots at any point of the simulation.

• The Environment current does not currently support the moving of robots in the

backward direction. But the Pioneer robot interface does support moving the robot

in the backward direction, and this has currently been implemented by turning the

robot around by 180 degrees and moving it forward the desired distance and

resetting the robots heading to the original direction. But this implementation will

not provide accurate readings for the sensors when the robot is moving backward.

The Environment could thus be modified to allow the moving of robots in the

backward direction so as to accurately represent the features of the actual robot.

• Other classes of the ARIA package such as the Action and behavioral classes,

classes that provide an interface to peripherals like the Gripper, the Camera etc.

can be implemented along with support for such peripherals on the Environment

module to enhance the capability of the simulator.

34

REFERENCES

[1] Anonymous, “ ARIA Reference Manual Version 1.1.11”, Jan 2003.

[2] Anonymous, “Pioneer 3™ & Pioneer 2™ H8-Series Operations Manual, version

3”, Aug 2003.

[3] The project website, http://www.cis.ksu.edu/~sdeloach/ai/projects/crsim.htm

[4] Rapaka V., “Co-Operative Robotic Simulator – Robot Simulator”, May 2004.

35

Appendix – User Manual

The edu.ksu.cis.cooprobot.pioneer.aria package contains the classes that

were implemented as a part of this project. The relationship between the classes

themselves are similar to those that exist in the ARIA software, and hence the ARIA user

manual should be a good starting point for an application designer wanting to use the

classes in this package to control the Pioneer robot. This user manual specifically

contains instructions on how to compile the code and run the applications once they have

been implemented.

1. Robot parameter XML file

The ArRobot constructor includes a filename as one of its arguments. This filename is

the robot parameter file represented in an xml format. The file itself could be located

anywhere; the entire path including the file name could be passed as the argument.

An example of the robot-param XML file is given below. The nodes in the XML file are

fixed and if modified, the method processInfo() in Class ArRobot should also be

modified accordingly. Most of the fields in the XML file are self-descriptive. It can be

seen that the position of the sonar on the robots have been commented. As mentioned as a

part of the future enhancements, if the protocol between the environment and the

HardwareSimulator were modified, this information can be sent to the environment

module in order to represent the sensor positions relative to the robot more accurately.

36

<?xml version="1.0" encoding="utf-8"?>

<robot>

 <params>

 <class>Pioneer</class>

 <subclass>p3at</subclass>

 <!-- radius in mm -->

 <robotRadius>500</robotRadius>

 <!-- half-height to diagonal of octagon -->

 <robotDiagonal>120</robotDiagonal>

 <!-- width in mm -->

 <robotWidth>505</robotWidth>

 <!-- length in mm -->

 <robotLength>626</robotLength>

 <!-- absolute maximum rotational velocity degrees / sec -->

 <maxRVelocity>300</maxRVelocity>

 <!-- absolute maximum mm / sec -->

 <maxVelocity>1200</maxVelocity>

 <!-- Section Sonar parameters -->

 <!-- number of sonar on the robot -->

 <sonarNum>16</sonarNum>

 <!-- SonarUnit <sonarNumber> <x position, mm> <y position, mm>

<heading of disc, degrees>

 <sonar>

 <sonarUnit>

 <sonarNumber>0</sonarNumber>

 <sonarX>147</sonarX>

 <sonarY>136</sonarY>

 <sonarTh>90</sonarTh>

 </sonarUnit>

 <sonarUnit>

 <sonarNumber>1</sonarNumber>

 <sonarX>193</sonarX>

 <sonarY>119</sonarY>

 <sonarTh>50</sonarTh>

 </sonarUnit>

.

.

.

 <sonarUnit>

 <sonarNumber>15</sonarNumber>

 <sonarX>-144</sonarX>

 <sonarY>136</sonarY>

 <sonarTh>90</sonarTh>

 </sonarUnit>

-->

 </params>

</robot>

37

2. Environment XML File

When designing an application, an environment model XML file needs to be provided as

a command line input to the environment. This would contain the specifics of the virtual

environment for the simulation run. Such files are self-descriptive and can be found under

the testLoadFiles->environment directory within the Robosim project directory. More

information on these can be found in [4]

3. Running the application

The code required in order to run an application are:

• edu.ksu.cis.cooprobot.simulator.environment.Environment.java

• edu.ksu.cis.cooprobot.simulator.robot.pioneer.aria.ArRobot.java

• edu.ksu.cis.cooprobot.simulator.viewer.Viewer2D.java

A robotic application can be run using the simulator as follows,

1) Create an environment model file in the following directory,

Robosim → TestLoadFiles → environment

2) Start the environment,

The environment can be started up by the following command

>java edu.ksu.cis.cooprobot.simulator.environment.Environment

../TestLoadFiles/environment/file.xml

At any time during the simulation a 2-D viewer can be started,

38

>java edu.ksu.cis.cooprobot.simulator.viewer.Viewer2D localhost 3000

3) Start the robots, the number of robots and their ids are determined by the data in the

definition file. When the environment is started-up using the xml definition file as shown

above, the environment will wait until the number of robots specified in the file has

connected to it. The robot(s) can be started as follows

>java edu.ksu.cis.cooprobot.simulator.<robotApplication> robotName localhost

portNumber

The server, ports can be modified accordingly to run the application components in a

distributed manner.

